留学之路 >> 留学 >  >> 美国 >> 美国留学指南

美国研究生Mathematics辅导及介绍

  来源: 美国留学指南  更新时间:2025/1/17

数学专业典型的硕士学位分为Master of Science(MS)和Master of Arts(MA)两种,博士学位以Doctor of Philosophy为主,数学作为理科中的一门学科,研究生录取以博士招生为主,尤其是基础数学领域,部分学校甚至不设置独立的硕士项目,比如哈佛大学、普林斯顿大学等。

美国研究生Mathematics辅导及介绍

硕士阶段学生需要修读30-36个学分(约8-10门课程),可以选择以论文的形式或者非论文的形式毕业,学习时间1.5-2年的时间;而博士阶段需要修读72个学分,除了课程以外学生还需要参加课程考试、口语考试、论文答辩等阶段,时间为4-7年的时间。

在美国学校的申请过程中,提前了解美国院校的课程开设情况,有助于我们选泽更适合自己的学校。开设数学专业的院校在研究生的课程设置中,有相通的部分,比如线性代数、数论、拓扑、微分几何、多变量分析、泛函分析、谐波分析、常微分方程、偏微分方程、数值方法、数值分析、科学计算、流体动力学、概率论等,也有院校自身特色的部分。

核心课程

Modern Algebra 现代代数

Complex Analysis 复杂分析

Measure Theory and Integration 测量理论与一体化

Introduction to Functional Analysis 功能分析导论

Geometry and Topology 几何与拓扑

Number Theory 数论

Mathematical Physics 数学物理学

Statistics and Data Analysis 统计与数据分析

Introduction to Complexity Theory 复杂性理论导论

Partial Differential Equations 偏微分方程

Mathematical Modelling 数学建模

Graph Theory 图论

研究方向

1、拓扑学

拓扑学是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογ?α的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。

2、几何学

几何学,简称几何,是研究空间区域关系的数学分支。现代概念上的几何其抽象程度和一般化程度大幅提高,并与分析、抽象代数和拓扑学紧密结合。

3、离散数学

离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。

4、应用数学

用数学(Applied Mathematics)是应用目的明确的数学理论和方法的总称,研究如何应用数学知识到其它范畴(尤其是科学)的数学分枝,可以说是纯数学的相反。包括微分方程、向量分析、矩阵、傅里叶变换、复变分析、数值方法、概率论、数理统计、运筹学、控制理论、组合数学、信息论等许多数学分支,也包括从各种应用领域中提出的数学问题的研究。计算数学有时也可视为应用数学的一部分。

5、分析数学

数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

6、代数

代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科。 初等代数是更古老的算术的推广和发展。

7、基础数学

基础数学也叫纯粹数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。

8、逻辑学

逻辑(英语:logic,或称为理则、论理、推理)是有效推论的哲学研究。逻辑学-就是研究规律性事物的一门学科。逻辑被使用在大部份的智能活动中,但主要在哲学、数学、语义学和计算机科学等领域内被视为一门学科。逻辑讨论逻辑论证会呈现的一般形式,哪种形式是有效的,以及其中的谬论。在哲学里,逻辑被应用在大多数的主要领域之中:形而上学、本体论、知识论及伦理学。在数学里,逻辑是指研究某个形式语言的有效推论。在辩论法中也会学习到逻辑。

美国研究生



From:https://www.021fl.net/abroad/usa/guide/10008103.asp
    Copyright © www.021fl.net 留学之路 All rights reserved.